Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2320859121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412130

RESUMO

Well-controlled repair mechanisms are involved in the maintenance of genomic stability, and their failure can precipitate DNA abnormalities and elevate tumor risk. In addition, the tumor microenvironment, enriched with factors inducing oxidative stress and affecting cell cycle checkpoints, intensifies DNA damage when repair pathways falter. Recent research has unveiled associations between certain bacteria, including Mycoplasmas, and various cancers, and the causative mechanism(s) are under active investigation. We previously showed that Mycoplasma fermentans DnaK, an HSP70 family chaperone protein, hampers the activity of proteins like PARP1 and p53, crucial for genomic integrity. Moreover, our analysis of its interactome in human cancer cell lines revealed DnaK's engagement with several components of DNA-repair machinery. Finally, in vivo experiments performed in our laboratory using a DnaK knock-in mouse model generated by our group demonstrated that DnaK exposure led to increased DNA copy number variants, indicative of genomic instability. We present here evidence that expression of DnaK is linked to increased i) incidence of tumors in vivo upon exposure to urethane, a DNA damaging agent; ii) spontaneous DNA damage ex vivo; and iii) expression of proinflammatory cytokines ex vivo, variations in reactive oxygen species levels, and increased ß-galactosidase activity across tissues. Moreover, DnaK was associated with increased centromeric instability. Overall, these findings highlight the significance of Mycoplasma DnaK in the etiology of cancer and other genetic disorders providing a promising target for prevention, diagnostics, and therapeutics.


Assuntos
Proteínas de Escherichia coli , Mycoplasma , Neoplasias , Animais , Camundongos , Humanos , Mycoplasma/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Neoplasias/genética , Dano ao DNA , DNA , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microambiente Tumoral
2.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37873235

RESUMO

Telomeres protect chromosome ends and determine the replication potential of dividing cells. The canonical telomere sequence TTAGGG is synthesized by telomerase holoenzyme, which maintains telomere length in proliferative stem cells. Although the core components of telomerase are well-defined, mechanisms of telomerase regulation are still under investigation. We report a novel role for the Src family kinase Fyn, which disrupts telomere maintenance in stem cells by phosphorylating the scaffold protein Menin. Fyn phosphorylates Menin at tyrosine 603 (Y603), which increases Menin's SUMO1 modification, C-terminal stability, and importantly, its association with the telomerase RNA component (TR). We show that SUMO1-Menin decreases TR's association with telomerase subunit Dyskerin, suggesting that Fyn's phosphorylation of Menin induces telomerase subunit mislocalization and may compromise telomerase function at telomeres. Importantly, we find that Fyn inhibition reduces accelerated telomere shortening in human iPSCs harboring mutations for dyskeratosis congenita.

3.
Nat Commun ; 13(1): 7074, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400785

RESUMO

Centromere defects in Systemic Sclerosis (SSc) have remained unexplored despite the fact that many centromere proteins were discovered in patients with SSc. Here we report that lesion skin fibroblasts from SSc patients show marked alterations in centromeric DNA. SSc fibroblasts also show DNA damage, abnormal chromosome segregation, aneuploidy (only in diffuse cutaneous (dcSSc)) and micronuclei (in all types of SSc), some of which lose centromere identity while retaining centromere DNA sequences. Strikingly, we find cytoplasmic "leaking" of centromere proteins in limited cutaneous SSc (lcSSc) fibroblasts. Cytoplasmic centromere proteins co-localize with antigen presenting MHC Class II molecules, which correlate precisely with the presence of anti-centromere antibodies. CENPA expression and micronuclei formation correlate highly with activation of the cGAS-STING/IFN-ß pathway as well as markers of reactive oxygen species (ROS) and fibrosis, ultimately suggesting a link between centromere alterations, chromosome instability, SSc autoimmunity, and fibrosis.


Assuntos
Esclerodermia Difusa , Escleroderma Sistêmico , Humanos , Escleroderma Sistêmico/metabolismo , Instabilidade Cromossômica , Fibrose , Nucleotidiltransferases/genética
4.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012581

RESUMO

Robust, tightly regulated DNA repair is critical to maintaining genome stability and preventing cancer. Eukaryotic DNA is packaged into chromatin, which has a profound, yet incompletely understood, regulatory influence on DNA repair and genome stability. The chromatin remodeler HELLS (helicase, lymphoid specific) has emerged as an important epigenetic regulator of DNA repair, genome stability, and multiple cancer-associated pathways. HELLS belongs to a subfamily of the conserved SNF2 ATP-dependent chromatin-remodeling complexes, which use energy from ATP hydrolysis to alter nucleosome structure and packaging of chromatin during the processes of DNA replication, transcription, and repair. The mouse homologue, LSH (lymphoid-specific helicase), plays an important role in the maintenance of heterochromatin and genome-wide DNA methylation, and is crucial in embryonic development, gametogenesis, and maturation of the immune system. Human HELLS is abundantly expressed in highly proliferating cells of the lymphoid tissue, skin, germ cells, and embryonic stem cells. Mutations in HELLS cause the human immunodeficiency syndrome ICF (Immunodeficiency, Centromeric instability, Facial anomalies). HELLS has been implicated in many types of cancer, including retinoblastoma, colorectal cancer, hepatocellular carcinoma, and glioblastoma. Here, we review and summarize accumulating evidence highlighting important roles for HELLS in DNA repair, genome maintenance, and key pathways relevant to cancer development, progression, and treatment.


Assuntos
DNA Helicases , Glioblastoma , Síndromes de Imunodeficiência , Trifosfato de Adenosina , Animais , Cromatina , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Instabilidade Genômica , Humanos , Síndromes de Imunodeficiência/genética , Camundongos
5.
J Biol Chem ; 295(25): 8537-8549, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371391

RESUMO

Overexpression of centromeric proteins has been identified in a number of human malignancies, but the functional and mechanistic contributions of these proteins to disease progression have not been characterized. The centromeric histone H3 variant centromere protein A (CENPA) is an epigenetic mark that determines centromere identity. Here, using an array of approaches, including RNA-sequencing and ChIP-sequencing analyses, immunohistochemistry-based tissue microarrays, and various cell biology assays, we demonstrate that CENPA is highly overexpressed in prostate cancer in both tissue and cell lines and that the level of CENPA expression correlates with the disease stage in a large cohort of patients. Gain-of-function and loss-of-function experiments confirmed that CENPA promotes prostate cancer cell line growth. The results from the integrated sequencing experiments suggested a previously unidentified function of CENPA as a transcriptional regulator that modulates expression of critical proliferation, cell-cycle, and centromere/kinetochore genes. Taken together, our findings show that CENPA overexpression is crucial to prostate cancer growth.


Assuntos
Proteína Centromérica A/metabolismo , Histonas/metabolismo , Neoplasias da Próstata/patologia , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Centromérica A/antagonistas & inibidores , Proteína Centromérica A/genética , Mutação com Ganho de Função , Histonas/genética , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
6.
Infect Agent Cancer ; 15: 19, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32165916

RESUMO

The human endogenous retroviruses HERV-K HML-2 have been considered a possible cause of human breast cancer (BrC). A HERV-K HML-2 fully intact provirus Xq21.33 was recently identified in some West African people. We used PCR technology to search for the Xq21.33 provirus in DNA from Nigerian women with BrC and controls. to see if Xq21.33 plays any role in predisposing to BrC. This provirus was detected in 27 of 216 (12.5%) women with BrC and in 22 of 219 (10.0%) controls. These results were not statistically significant. The prevalence of provirus in premenopausal control women 44 years or younger [18/157 (11.46%)} vs women with BrC [12/117 (10.26%)] showed no statistical difference. The prevalence of virus in postmenopausal control women > 45 yrs. was 7.4% (4/54) vs 15.31% (15/98) in postmenopausal women with BrC. These changes were not statistically significant at <.05, but the actual p value of <.0.079, suggests that Xq21.33 might play some role in predisposing to BrC in postmenopausal women. Provirus was present in Ghanaian women (6/87), in 1/6 Pygmy populations and in African American men (4/45) and women (6/68), but not in any Caucasian women (0/109). Two BrC cell lines (HCC 70 and DT22) from African American women had Xq21.33. Env regions of the virus which differed by 2-3 SNPs did not alter the protein sequence of the virus. SNP at 5730 and 8529 were seen in all persons with provirus, while 54% had an additional SNP at 7596.Two Nigerian women and 2 Ghanaian women had additional unusual SNPs. Homozygosity was seen in (5/27) BrC and (2/22) control women. The genetic variation and homozygosity patterns suggested that there was gene conversion of this X chromosome associated virus. The suggestive finding in this preliminary data of possible increased prevalence of Xq21.33 provirus in post-menopausal Nigerian women with BrC should be clarified by a more statistically powered study sample to see if postmenopausal African and/or African American women carriers of Xq21.33 might show increased risk of BrC. The implication of finding such a link would be the development of antiretroviral drugs that might aid in preventing BrC in Xq21.33+ women.

7.
Sci Rep ; 9(1): 11259, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375789

RESUMO

Centromere genomics remain poorly characterized in cancer, due to technologic limitations in sequencing and bioinformatics methodologies that make high-resolution delineation of centromeric loci difficult to achieve. We here leverage a highly specific and targeted rapid PCR methodology to quantitatively assess the genomic landscape of centromeres in cancer cell lines and primary tissue. PCR-based profiling of centromeres revealed widespread heterogeneity of centromeric and pericentromeric sequences in cancer cells and tissues as compared to healthy counterparts. Quantitative reductions in centromeric core and pericentromeric markers (α-satellite units and HERV-K copies) were observed in neoplastic samples as compared to healthy counterparts. Subsequent phylogenetic analysis of a pericentromeric endogenous retrovirus amplified by PCR revealed possible gene conversion events occurring at numerous pericentromeric loci in the setting of malignancy. Our findings collectively represent a more comprehensive evaluation of centromere genetics in the setting of malignancy, providing valuable insight into the evolution and reshuffling of centromeric sequences in cancer development and progression.


Assuntos
Biomarcadores Tumorais/genética , Carcinogênese/genética , Centrômero/genética , Evolução Molecular , Neoplasias/genética , Biomarcadores Tumorais/isolamento & purificação , Linhagem Celular Tumoral , DNA Satélite/genética , DNA Satélite/isolamento & purificação , DNA Viral/genética , DNA Viral/isolamento & purificação , Progressão da Doença , Retrovirus Endógenos/genética , Genômica , Humanos , Neoplasias/patologia , Filogenia , Reação em Cadeia da Polimerase
8.
BMC Med Genomics ; 12(1): 58, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046767

RESUMO

BACKGROUND: Human Endogenous Retroviruses type K HML-2 (HK2) are integrated into 117 or more areas of human chromosomal arms while two newly discovered HK2 proviruses, K111 and K222, spread extensively in pericentromeric regions, are the first retroviruses discovered in these areas of our genome. METHODS: We use PCR and sequencing analysis to characterize pericentromeric K111 proviruses in DNA from individuals of diverse ethnicities and patients with different diseases. RESULTS: We found that the 5' LTR-gag region of K111 proviruses is missing in certain individuals, creating pericentromeric instability. K111 deletion (-/- K111) is seen in about 15% of Caucasian, Asian, and Middle Eastern populations; it is missing in 2.36% of African individuals, suggesting that the -/- K111 genotype originated out of Africa. As we identified the -/-K111 genotype in Cutaneous T-cell lymphoma (CTCL) cell lines, we studied whether the -/-K111 genotype is associated with CTCL. We found a significant increase in the frequency of detection of the -/-K111 genotype in Caucasian patients with severe CTCL and/or Sézary syndrome (n = 35, 37.14%), compared to healthy controls (n = 160, 15.6%) [p = 0.011]. The -/-K111 genotype was also found to vary in HIV-1 infection. Although Caucasian healthy individuals have a similar frequency of detection of the -/- K111 genotype, Caucasian HIV Long-Term Non-Progressors (LTNPs) and/or elite controllers, have significantly higher detection of the -/-K111 genotype (30.55%; n = 36) than patients who rapidly progress to AIDS (8.5%; n = 47) [p = 0.0097]. CONCLUSION: Our data indicate that pericentromeric instability is associated with more severe CTCL and/or Sézary syndrome in Caucasians, and appears to allow T-cells to survive lysis by HIV infection. These findings also provide new understanding of human evolution, as the -/-K111 genotype appears to have arisen out of Africa and is distributed unevenly throughout the world, possibly affecting the severity of HIV in different geographic areas.


Assuntos
Centrômero/virologia , Retrovirus Endógenos/genética , Retrovirus Endógenos/fisiologia , Variação Genética , Infecções por HIV/virologia , Linfoma Cutâneo de Células T/virologia , Síndrome de Sézary/virologia , Animais , Linhagem Celular , Genótipo , Humanos
9.
J Clin Invest ; 129(6): 2555-2570, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31107242

RESUMO

The nuclear protein DEK is an endogenous DNA-binding chromatin factor regulating hematopoiesis. DEK is one of only 2 known secreted nuclear chromatin factors, but whether and how extracellular DEK regulates hematopoiesis is not known. We demonstrated that extracellular DEK greatly enhanced ex vivo expansion of cytokine-stimulated human and mouse hematopoietic stem cells (HSCs) and regulated HSC and hematopoietic progenitor cell (HPC) numbers in vivo and in vitro as determined both phenotypically (by flow cytometry) and functionally (through transplantation and colony formation assays). Recombinant DEK increased long-term HSC numbers and decreased HPC numbers through a mechanism mediated by the CXC chemokine receptor CXCR2 and heparan sulfate proteoglycans (HSPGs) (as determined utilizing Cxcr2-/- mice, blocking CXCR2 antibodies, and 3 different HSPG inhibitors) that was associated with enhanced phosphorylation of ERK1/2, AKT, and p38 MAPK. To determine whether extracellular DEK required nuclear function to regulate hematopoiesis, we utilized 2 mutant forms of DEK: one that lacked its nuclear translocation signal and one that lacked DNA-binding ability. Both altered HSC and HPC numbers in vivo or in vitro, suggesting the nuclear function of DEK is not required. Thus, DEK acts as a hematopoietic cytokine, with the potential for clinical applicability.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Citocinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Citocinas/genética , Proteínas de Ligação a DNA/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação , Proteínas Oncogênicas/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptores de Interleucina-8B
10.
PLoS One ; 14(2): e0212970, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30818388

RESUMO

Human endogenous retroviruses are remnants of ancient germline infections that make up approximately 8% of the modern human genome. The HERV-K (HML-2) family is one of the most recent entrants into the human germline, these viruses appear to be transcriptionally active, and HERV-K viral like particles (VLPs) are found in cell lines from a number of human malignancies. HERV-K VLPs were first found to be produced in teratocarcinoma cell lines, and since then teratocarcinoma has been thought of as the classical model for HERV-Ks, with the NCCIT teratocarcinoma cell line particularly known to produce VLPs. Treatment for teratocarcinoma has progressed since its discovery, with improved prognosis for patients. Since the introduction of platinum based therapy, first year survival has greatly improved even with disseminated disease; however, it is estimated that 20% to 30% of patients present with metastatic germ cell tumor relapse following initial treatments. Also, the toxicity associated with the use of chemotherapeutic agents used to treat germ cell tumors is still a major concern. In this study, we show that the depletion of the HERV-K accessory protein Np9 increases the sensitivity of NCCIT teratocarcinoma cells to bleomycin and cisplatin. While decreasing the expression of Np9 had only a modest effect on the baseline viability of the cells, the reduced expression of Np9 increased the sensitivity of the teratocarcinoma cells to environmental (serum starvation) and chemical (chemotherapeutic) stresses. Np9 is also essential to the migration of NCCIT teratocarcinoma cells: in a wound closure assay, reduced expression of Np9 resulted in cells migrating into the wound at a slower rate, whereas reintroduction of Np9 resulted in NCCIT cells migrating back into the wound in a manner similar to the control. These findings support the implication that the HERV-K accessory protein Np9 has oncogenic potential.


Assuntos
Retrovirus Endógenos/fisiologia , Produtos do Gene env/fisiologia , Teratocarcinoma/fisiopatologia , Teratocarcinoma/virologia , Antineoplásicos/farmacologia , Bleomicina/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Retrovirus Endógenos/genética , Retrovirus Endógenos/patogenicidade , Produtos do Gene env/genética , Humanos , Masculino , Teratocarcinoma/patologia , Neoplasias Testiculares/patologia , Neoplasias Testiculares/fisiopatologia , Neoplasias Testiculares/virologia
11.
Genome Res ; 27(12): 2040-2049, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29141960

RESUMO

The centromere is the structural unit responsible for the faithful segregation of chromosomes. Although regulation of centromeric function by epigenetic factors has been well-studied, the contributions of the underlying DNA sequences have been much less well defined, and existing methodologies for studying centromere genomics in biology are laborious. We have identified specific markers in the centromere of 23 of the 24 human chromosomes that allow for rapid PCR assays capable of capturing the genomic landscape of human centromeres at a given time. Use of this genetic strategy can also delineate which specific centromere arrays in each chromosome drive the recruitment of epigenetic modulators. We further show that, surprisingly, loss and rearrangement of DNA in centromere 21 is associated with trisomy 21. This new approach can thus be used to rapidly take a snapshot of the genetics and epigenetics of each specific human centromere in nondisjunction disorders and other biological settings.


Assuntos
Centrômero , Genômica/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sequência de Bases , Proteína B de Centrômero/metabolismo , Instabilidade Cromossômica , Cromossomos Humanos Par 21 , DNA , DNA Satélite , Síndrome de Down/genética , Epigênese Genética , Feminino , Rearranjo Gênico , Marcadores Genéticos , Humanos , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Deleção de Sequência
12.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931682

RESUMO

Human endogenous retroviruses (HERVs) make up 8% of the human genome. The HERV type K (HERV-K) HML-2 (HK2) family contains proviruses that are the most recent entrants into the human germ line and are transcriptionally active. In HIV-1 infection and cancer, HK2 genes produce retroviral particles that appear to be infectious, yet the replication capacity of these viruses and potential pathogenicity has been difficult to ascertain. In this report, we screened the efficacy of commercially available reverse transcriptase inhibitors (RTIs) at inhibiting the enzymatic activity of HK2 RT and HK2 genomic replication. Interestingly, only one provirus, K103, was found to encode a functional RT among those examined. Several nucleoside analogue RTIs (NRTIs) blocked K103 RT activity and consistently inhibited the replication of HK2 genomes. The NRTIs zidovudine (AZT), stavudine (d4T), didanosine (ddI), and lamivudine (3TC), and the nucleotide RTI inhibitor tenofovir (TDF), show efficacy in blocking K103 RT. HIV-1-specific nonnucleoside RTIs (NNRTIs), protease inhibitors (PIs), and integrase inhibitors (IIs) did not affect HK2, except for the NNRTI etravirine (ETV). The inhibition of HK2 infectivity by NRTIs appears to take place at either the reverse transcription step of the viral genome prior to HK2 viral particle formation and/or in the infected cells. Inhibition of HK2 by these drugs will be useful in suppressing HK2 infectivity if these viruses prove to be pathogenic in cancer, neurological disorders, or other diseases associated with HK2. The present studies also elucidate a key aspect of the life cycle of HK2, specifically addressing how they do, and/or did, replicate.IMPORTANCE Endogenous retroviruses are relics of ancestral virus infections in the human genome. The most recent of these infections was caused by HK2. While HK2 often remains silent in the genome, this group of viruses is activated in HIV-1-infected and cancer cells. Recent evidence suggests that these viruses are infectious, and the potential exists for HK2 to contribute to disease. We show that HK2, and specifically the enzyme that mediates virus replication, can be inhibited by a panel of drugs that are commercially available. We show that several drugs block HK2 with different efficacies. The inhibition of HK2 replication by antiretroviral drugs appears to occur in the virus itself as well as after infection of cells. Therefore, these drugs might prove to be an effective treatment by suppressing HK2 infectivity in diseases where these viruses have been implicated, such as cancer and neurological syndromes.


Assuntos
Retrovirus Endógenos/efeitos dos fármacos , Retrovirus Endógenos/genética , Genoma Viral/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Transcrição Reversa/efeitos dos fármacos , Fármacos Anti-HIV/farmacologia , Linhagem Celular Tumoral , Retrovirus Endógenos/enzimologia , Retrovirus Endógenos/patogenicidade , Humanos , Inibidores de Integrase/farmacologia , Lamivudina/farmacologia , Inibidores de Proteases/farmacologia , Estavudina/farmacologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Zidovudina/farmacologia
13.
J Virol ; 89(14): 7187-201, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25926654

RESUMO

UNLABELLED: Human endogenous retroviruses (HERV) make up 8% of the human genome. While the youngest of these retroviruses, HERV-K(HML-2), termed HK2, is able to code for all viral proteins and produce virus-like particles, it is not known if these virus particles package and transmit HK2-related sequences. Here, we analyzed the capacity of HK2 for packaging and transmitting HK2 sequences. We created an HK2 probe, termed Bogota, which can be packaged into HK2 viruses, and transfected it into cells that make HK2 particles. Supernatants of the transfected cells, which contained HK2 viral particles, then were added to target cells, and the transmissibility of the HK2 Bogota reporter was tracked by G418 resistance. Our studies revealed that contemporary HK2 virions produced by some teratocarcinoma and breast cancer cell lines, as well as by peripheral blood lymphocytes from lymphoma patients, can package HK2 Bogota probes, and these viruses transmitted these probes to other cells. After transmission, HK2 Bogota transcripts undergo reverse transcription, a step impaired by antiretroviral agents or by introduction of mutations into the probe sequences required for reverse transcription. HK2 viruses were more efficiently transmitted in the presence of HK2 Rec or HIV-1 Tat and Vif. Transmitted Bogota probes formed episomes but did not integrate into the cellular genome. Resistance to integration might explain the relatively low number of HK2 insertions that were acquired during the last 25 million years of evolution. Whether transient transmission of modern HK2 sequences, which encode two putative oncoproteins, can lead to disease remains to be studied. IMPORTANCE: Retroviruses invaded the genome of human ancestors over the course of millions of years, yet these viruses generally have been inactivated during evolution, with only remnants of these infectious sequences remaining in the human genome. One of these viruses, termed HK2, still is capable of producing virus particles, although these particles have been regarded as being noninfectious. Using a genetic probe derived from HK2, we have discovered that HK2 viruses produced in modern humans can package HK2 sequences and transmit them to various other cells. Furthermore, the genetic sequences packaged in HK2 undergo reverse transcription. The transmitted probe circularized in the cell and failed to integrate into the cellular genome. These findings suggest that modern HK2 viruses can package viral RNA and transmit it to other cells. Contrary to previous views, we provide evidence of an extracellular viral phase of modern HK2 viruses. We have no evidence of sustained, spreading infection.


Assuntos
DNA Viral/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/fisiologia , Montagem de Vírus , Linhagem Celular , DNA Viral/genética , Transferência Genética Horizontal , Genes Reporter , Humanos , Transcrição Reversa , Transcrição Gênica , Transdução Genética
14.
Genome Biol ; 16: 74, 2015 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25886262

RESUMO

BACKGROUND: Approximately 8% of the human genome consists of sequences of retroviral origin, a result of ancestral infections of the germ line over millions of years of evolution. The most recent of these infections is attributed to members of the human endogenous retrovirus type-K (HERV-K) (HML-2) family. We recently reported that a previously undetected, large group of HERV-K (HML-2) proviruses, which are descendants of the ancestral K111 infection, are spread throughout human centromeres. RESULTS: Studying the genomes of certain cell lines and the DNA of healthy individuals that seemingly lack K111, we discover new HERV-K (HML-2) members hidden in pericentromeres of several human chromosomes. All are related through a common ancestor, termed K222, which is a virus that infected the germ line approximately 25 million years ago. K222 exists as a single copy in the genomes of baboons and high order primates, but not New World monkeys, suggesting that progenitor K222 infected the primate germ line after the split between New and Old World monkeys. K222 exists in modern humans at multiple loci spread across the pericentromeres of nine chromosomes, indicating it was amplified during the evolution of modern humans. CONCLUSIONS: Copying of K222 may have occurred through recombination of the pericentromeres of different chromosomes during human evolution. Evidence of recombination between K111 and K222 suggests that these retroviral sequences have been templates for frequent cross-over events during the process of centromere recombination in humans.


Assuntos
Centrômero/virologia , DNA Viral/isolamento & purificação , Retrovirus Endógenos/genética , Evolução Molecular , Sequência de Bases , Centrômero/genética , Cromossomos Humanos/genética , Cromossomos Humanos/virologia , Biologia Computacional , Primers do DNA , DNA Viral/genética , Retrovirus Endógenos/classificação , Retrovirus Endógenos/isolamento & purificação , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
15.
J Virol ; 88(17): 9673-82, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24920813

RESUMO

UNLABELLED: Human endogenous retrovirus type K (HERV-K) proviruses are scattered throughout the human genome, but as no infectious HERV-K virus has been detected to date, the mechanism by which these viruses replicated and populated the genome remains unresolved. Here, we provide evidence that, in addition to the RNA genomes that canonical retroviruses package, modern HERV-K viruses can contain reverse-transcribed DNA (RT-DNA) genomes. Indeed, reverse transcription of genomic HERV-K RNA into the DNA form is able to occur in three distinct times and locations: (i) in the virus-producing cell prior to viral release, yielding a DNA-containing extracellular virus particle similar to the spumaviruses; (ii) within the extracellular virus particle itself, transitioning from an RNA-containing particle to a DNA-containing particle; and (iii) after entry of the RNA-containing virus into the target cell, similar to canonical retroviruses, such as murine leukemia virus and HIV. Moreover, using a resuscitated HERV-K virus construct, we show that both viruses with RNA genomes and viruses with DNA genomes are capable of infecting target cells. This high level of genomic flexibility historically could have permitted these viruses to replicate in various host cell environments, potentially assisting in their many integration events and resulting in their high prevalence in the human genome. Moreover, the ability of modern HERV-K viruses to proceed through reverse transcription and package RT-DNA genomes suggests a higher level of replication competency than was previously understood, and it may be relevant in HERV-K-associated human diseases. IMPORTANCE: Retroviral elements comprise at least 8% of the human genome. Of all the endogenous retroviruses, HERV-K viruses are the most intact and biologically active. While a modern infectious HERV-K has yet to be found, HERV-K activation has been associated with cancers, autoimmune diseases, and HIV-1 infection. Thus, determining how this virus family became such a prevalent member of our genome and what it is capable of in its current form are of the utmost importance. Here, we provide evidence that HERV-K viruses currently found in the human genome are able to proceed through reverse transcription and historically utilized a life cycle with a surprising degree of genomic flexibility in which both RNA- and DNA-containing viruses were capable of mediating infection.


Assuntos
DNA Viral/genética , DNA Viral/metabolismo , Retrovirus Endógenos/genética , Genoma Viral , Provírus/genética , Linhagem Celular Tumoral , Retrovirus Endógenos/fisiologia , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Transcrição Reversa , Montagem de Vírus
16.
J Virol ; 88(16): 8924-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24872592

RESUMO

UNLABELLED: Approximately 8% of the human genome is made up of endogenous retroviral sequences. As the HIV-1 Tat protein activates the overall expression of the human endogenous retrovirus type K (HERV-K) (HML-2), we used next-generation sequencing to determine which of the 91 currently annotated HERV-K (HML-2) proviruses are regulated by Tat. Transcriptome sequencing of total RNA isolated from Tat- and vehicle-treated peripheral blood lymphocytes from a healthy donor showed that Tat significantly activates expression of 26 unique HERV-K (HML-2) proviruses, silences 12, and does not significantly alter the expression of the remaining proviruses. Quantitative reverse transcription-PCR validation of the sequencing data was performed on Tat-treated PBLs of seven donors using provirus-specific primers and corroborated the results with a substantial degree of quantitative similarity. IMPORTANCE: The expression of HERV-K (HML-2) is tightly regulated but becomes markedly increased following infection with HIV-1, in part due to the HIV-1 Tat protein. The findings reported here demonstrate the complexity of the genome-wide regulation of HERV-K (HML-2) expression by Tat. This work also demonstrates that although HERV-K (HML-2) proviruses in the human genome are highly similar in terms of DNA sequence, modulation of the expression of specific proviruses in a given biological situation can be ascertained using next-generation sequencing and bioinformatics analysis.


Assuntos
Retrovirus Endógenos/genética , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , HIV-1/genética , HIV-1/metabolismo , Transcriptoma/genética , Células Cultivadas , Retrovirus Endógenos/metabolismo , Genoma Humano/genética , Infecções por HIV/genética , Infecções por HIV/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Linfócitos/virologia , Provírus/genética , Provírus/metabolismo , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
Genome Res ; 23(9): 1505-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23657884

RESUMO

Human endogenous retroviruses (HERVs) make up 8% of the human genome. The HERV-K (HML-2) family is the most recent group of these viruses to have inserted into the genome, and we have detected the activation of HERV-K (HML-2) proviruses in the blood of patients with HIV-1 infection. We report that HIV-1 infection activates expression of a novel HERV-K (HML-2) provirus, termed K111, present in multiple copies in the centromeres of chromosomes throughout the human genome yet not annotated in the most recent human genome assembly. Infection with HIV-1 or stimulation with the HIV-1 Tat protein leads to the activation of K111 proviruses. K111 is present as a single copy in the genome of the chimpanzee, yet K111 is not found in the genomes of other primates. Remarkably, K111 proviruses appear in the genomes of the extinct Neanderthal and Denisovan, while modern humans have at least 100 K111 proviruses spread across the centromeres of 15 chromosomes. Our studies suggest that the progenitor K111 integrated before the Homo-Pan divergence and expanded in copy number during the evolution of hominins, perhaps by recombination. The expansion of K111 provides sequence evidence suggesting that recombination between the centromeres of various chromosomes took place during the evolution of humans. K111 proviruses show significant sequence variations in each individual centromere, which may serve as markers in future efforts to annotate human centromere sequences. Further, this work is an example of the potential to discover previously unknown genomic sequences through the analysis of nucleic acids found in the blood of patients.


Assuntos
Retrovirus Endógenos/genética , Genoma Humano , Infecções por HIV/genética , Provírus/genética , Integração Viral , Animais , Centrômero/genética , Centrômero/virologia , Cromossomos Humanos/genética , Cromossomos Humanos/virologia , Evolução Molecular , Hominidae/genética , Hominidae/virologia , Humanos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
18.
J Virol ; 86(20): 11194-208, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22855497

RESUMO

Human endogenous retroviruses (HERVs), which are remnants of ancestral retroviruses integrated into the human genome, are defective in viral replication. Because activation of HERV-K and coexpression of this virus with HIV-1 have been observed during HIV-1 infection, it is conceivable that HERV-K could affect HIV-1 replication, either by competition or by cooperation, in cells expressing both viruses. In this study, we found that the release efficiency of HIV-1 Gag was 3-fold reduced upon overexpression of HERV-K(CON) Gag. In addition, we observed that in cells expressing Gag proteins of both viruses, HERV-K(CON) Gag colocalized with HIV-1 Gag at the plasma membrane. Furthermore, HERV-K(CON) Gag was found to coassemble with HIV-1 Gag, as demonstrated by (i) processing of HERV-K(CON) Gag by HIV-1 protease in virions, (ii) coimmunoprecipitation of virion-associated HERV-K(CON) Gag with HIV-1 Gag, and (iii) rescue of a late-domain-defective HERV-K(CON) Gag by wild-type (WT) HIV-1 Gag. Myristylation-deficient HERV-K(CON) Gag localized to nuclei, suggesting cryptic nuclear trafficking of HERV-K Gag. Notably, unlike WT HERV-K(CON) Gag, HIV-1 Gag failed to rescue myristylation-deficient HERV-K(CON) Gag to the plasma membrane. Efficient colocalization and coassembly of HIV-1 Gag and HERV-K Gag also required nucleocapsid (NC). These results provide evidence that HIV-1 Gag heteromultimerizes with HERV-K Gag at the plasma membrane, presumably through NC-RNA interaction. Intriguingly, HERV-K Gag overexpression reduced not only HIV-1 release efficiency but also HIV-1 infectivity in a myristylation- and NC-dependent manner. Altogether, these results indicate that Gag proteins of endogenous retroviruses can coassemble with HIV-1 Gag and modulate the late phase of HIV-1 replication.


Assuntos
Retrovirus Endógenos/metabolismo , Produtos do Gene gag/metabolismo , HIV-1/metabolismo , HIV-1/patogenicidade , Proteínas dos Retroviridae/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular Tumoral , Membrana Celular/virologia , Células HeLa , Humanos , Transporte Proteico , Liberação de Vírus , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
19.
J Virol ; 86(15): 7790-805, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22593154

RESUMO

Human endogenous retroviruses (HERVs) make up 8% of the human genome. The expression of HERV-K (HML-2), the family of HERVs that most recently entered the genome, is tightly regulated but becomes markedly increased after infection with HIV-1. To better understand the mechanisms involved in this activation, we explored the role of the HIV-1 Tat protein in inducing the expression of these endogenous retroviral genes. Administration of recombinant HIV-1 Tat protein caused a 13-fold increase in HERV-K (HML-2) gag RNA transcripts in Jurkat T cells and a 10-fold increase in primary lymphocytes, and the expression of the HERV-K (HML-2) rec and np9 oncogenes was also markedly increased. This activation was seen especially in lymphocytes and monocytic cells, the natural hosts for HIV-1 infection. Luciferase reporter gene assays demonstrated that the effect of Tat on HERV-K (HML-2) expression occurred at the level of the transcriptional promoter. The transcription factors NF-κB and NF-AT contribute to the Tat-induced activation of the promoter, as shown by chromatin immunoprecipitation assays, mutational analysis of the HERV-K (HML-2) long terminal repeat, and treatments with agents that inhibit NF-κB or NF-AT activation. These studies demonstrate that HIV-1 Tat plays an important role in activating expression of HERV-K (HML-2) in the setting of HIV-1 infection.


Assuntos
Retrovirus Endógenos/fisiologia , Regulação Viral da Expressão Gênica , Produtos do Gene env/biossíntese , Infecções por HIV/metabolismo , HIV-1/metabolismo , Proteínas do Envelope Viral/biossíntese , Ativação Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene env/genética , Infecções por HIV/genética , HIV-1/genética , Humanos , Células Jurkat , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas do Envelope Viral/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia
20.
J Virol ; 86(1): 262-76, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031938

RESUMO

We previously reported finding the RNA of a type K human endogenous retrovirus, HERV-K (HML-2), at high titers in the plasma of HIV-1-infected and cancer patients (R. Contreras-Galindo et al., J. Virol. 82:9329-9236, 2008.). The extent to which the HERV-K (HML-2) proviruses become activated and the nature of their activated viral RNAs remain important questions. Therefore, we amplified and sequenced the full-length RNA of the env gene of the type 1 and 2 HERV-K (HML-2) viruses collected from the plasma of seven HIV-1-infected patients over a period of 1 to 3 years and from five breast cancer patients in order to reconstruct the genetic evolution of these viruses. HERV-K (HML-2) RNA was found in plasma fractions of HIV-1 patients at a density of ∼1.16 g/ml that contained both immature and correctly processed HERV-K (HML-2) proteins and virus-like particles that were recognized by anti-HERV-K (HML-2) antibodies. RNA sequences from novel HERV-K (HML-2) proviruses were discovered, including K111, which is specifically active during HIV-1 infection. Viral RNA arose from complete proviruses and proviruses devoid of a 5' long terminal repeat, suggesting that the expression of HERV-K (HML-2) RNA in these patients may involve sense and antisense transcription. In HIV-1-infected individuals, the HERV-K (HML-2) viral RNA showed evidence of frequent recombination, accumulation of synonymous rather than nonsynonymous mutations, and conserved N-glycosylation sites, suggesting that some of the HERV-K (HML-2) viral RNAs have undergone reverse transcription and are under purifying selection. In contrast, HERV-K (HML-2) RNA sequences found in the blood of breast cancer patients showed no evidence of recombination and exhibited only sporadic viral mutations. This study suggests that HERV-K (HML-2) is active in HIV-1-infected patients, and the resulting RNA message reveals previously undiscovered HERV-K (HML-2) genomic sequences.


Assuntos
Retrovirus Endógenos/genética , Infecções por HIV/virologia , HIV-1/genética , RNA Viral/genética , Retrovirus Endógenos/classificação , Retrovirus Endógenos/metabolismo , Genoma Viral , Infecções por HIV/sangue , HIV-1/classificação , HIV-1/metabolismo , Humanos , Dados de Sequência Molecular , Filogenia , RNA Viral/sangue , RNA Viral/metabolismo , Recombinação Genética , Transcrição Reversa , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...